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Abstract
We propose sequential multiple testing procedures which control the false discovery 
rate (FDR) or the positive-false discovery rate (pFDR) under arbitrary dependence 
between the data streams. This is accomplished by “optimizing” an upper bound 
on these error metrics for a class of step-down sequential testing procedures. Both 
open-ended and truncated versions of these sequential procedures are given, both 
being able to control both the type I multiple testing metric (FDR or pFDR) at speci-
fied levels, and the former being able to control both the type  I and type  II (e.g., 
FDR and the false nondiscovery rate, FNR). In simulation studies, these procedures 
provide 45–65% savings in average sample size over their fixed-sample competitors. 
We illustrate our procedures on drug data from the United Kingdom’s Yellow Card 
Pharmacovigilance Database.

Keywords  False discovery rate · Knapsack problem · Multiple testing · 
Optimization · Positive-false discovery rate · Sequential analysis · Step down 
procedure

1  Introduction

The majority of the procedures proposed in the statistics literature for multi-
ple testing for fixed-sample size or sequential data can be bifurcated into either 
step-up or step-down procedures. Step-up procedures decide whether to accept 
or reject null hypotheses in order of increasing significance, whereas step-down 
procedures operate in the reverse order. For testing J ≥ 2 null hypotheses, the 
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Benjamini-Hochberg [1, hereafter BH] procedure is step-up, and is known to con-
trol the false discovery rate (FDR) at the nominal level � under independence of 
p values, and at no more than the inflated level C� , where C = C(J) ∶=

∑J

j=1
1∕j , 

under arbitrary dependence among p values, with C ≈ log(J) for large J. Although 
[2] showed that FDR can be controlled at the uninflated level � under certain 
types of positive dependence, [3] showed that the FDR bound C� is sharp for the 
step-up BH procedure in the sense that there exists a joint distribution of p values 
for which the FDR equals this. Analogous results were established by [4] and [5] 
about step-up procedures for sequential data.

In this sense, the “worst-case” performance of step-up procedures is essen-
tially completely understood, at least without imposing additional restrictions or 
assumptions on the joint distribution of p values. So in this paper, we turn out 
attention to studying and controlling the worst-case performance of step-down 
procedures, in the setting of sequential data, i.e., J data streams or arbitrary 
dependence. More specifically, we give a step-down procedure for sequential data 
and the smallest possible constant D < C whose FDR is bounded above by D� 
where, again, � is the nominal FDR level.

Hart and Weiss [6] used linear programming to find a sharp upper bound on 
the probability of rejection for a class of multiple testing procedures in terms 
of the true, marginal c.d.f.s of the p values. Calculating their bound, therefore, 
requires knowledge of at least the marginals of the true joint distribution. Guo 
and Rao [3] also used optimization but to find an upper bound on the false discov-
ery rate (FDR) in terms of a step-down procedure’s step values, that holds under 
arbitrary joint distribution of the p values. By choosing the step values to control 
the upper bound, they produce a step-down procedure whose FDR control holds 
under arbitrary joint distributions. The current paper extends this line of research 
in the following ways. First, by extending to the sequential setting an FDR-con-
trolling procedure without requiring or imposing assumptions on the joint distri-
bution of the p values, the open-ended versions of these sequential procedures 
allow the possibility of simultaneously controlling both type  I and type  II error 
metrics (e.g., FDR and the false nondiscovery rate, FNR). Second, by removing 
an implicit assumption on the p values in Guo and Rao’s proof that is stronger 
than validity of p values and applies to both the sequential and fixed-sample set-
tings; see the Appendix for details. Finally, by extending this methodology to 
positive-false discovery rate (pFDR) and its type II analog.

The rest of this paper is organized as follows. After giving the notational setup 
in Sect. 2, Sect. 3 covers untruncated (i.e., open-ended) sequential procedures and 
records the FDR/FNR- and pFDR/pFNR-controlling procedures in Theorems 3.1 
and 3.2, respectively, as special cases of a generic untruncated procedure given 
in Sect. 3.1. Truncated sequential procedures are handled analogously in Sect. 4 
with the corresponding FDR- and pFDR-controlling procedures given in Theo-
rems  4.1 and 4.2, respectively. To aide the reader, Table  1 is a “directory” of 
these theorems and cases. In Sect. 5, we present simulation studies on Binomial 
and Poisson data of the proposed sequential procedures and compare with their 
fixed-sample counterparts, and in Sect. 6, we apply our proposed procedures to 
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data from the UK’s Yellow Card Pharmacovigilance Database. We end with con-
clusions and discussion in Sect. 7. Proofs are given in the Appendix.

1.1 � Dedication

This paper is dedicated to the memory of Prof.  Tze Leung Lai, who influenced 
and inspired the authors directly and indirectly. While the current paper is not 
a direct offshoot of one of Prof. Lai’s works, it overlaps with some of Lai’s most 
active research areas including sequential hypothesis testing [7–9], adaptive designs 
[10–12], multiple comparisons [13, 14], optimization [15], quality control [16], lon-
gitudinal data [17], and biomedical applications [18], to name a few references.

2 � Setup

2.1 � Data Streams, Hypotheses, and Error Metrics

Our general form of data streams and hypotheses is as follows. Assume that there 
are J ≥ 2 data streams

In order to implement our proposed procedures, the marginal type  I and II error 
probabilities of component test statistics on each stream will need to be controlled 
at certain levels; see (4)–(5) below. Beyond that, we make no assumptions about the 
dimension of the sequentially observed data X(j)

n  , which may themselves be vectors 
of varying size, nor about the dependence structure of within-stream data X(j)

n ,X
(j)
m  or 

between-stream data X(j)
n ,X

(j�)
m  ( j ≠ j′ ). In particular, there can be arbitrary “overlap” 

between data streams, an extreme case being that all the data streams are the same, 
which is equivalent to testing multiple hypotheses about a single data source. For 
any positive integer j let [j] = {1,… , j} . For each data stream j ∈ [J] , assume that 
there is a parameter vector �(j) ∈ Θ(j) determining that distribution of the stream 
X
(j)

1
,X

(j)

2
,… , and it is desired to test a null hypothesis  H(j) versus an alternative 

hypothesis G(j) , where H(j) and G(j) are disjoint subsets of the parameter space Θ(j) 
containing �(j) . It is not required that H(j) ∪ G(j) = Θ(j) , e.g., one-sided alternatives 
or separated hypotheses are possible. The null hypothesis H(j) is considered true 

(1)

Data stream 1 ∶ X
(1)

1
,X

(1)

2
,…

Data stream 2 ∶ X
(2)

1
,X

(2)

2
,…

⋮

Data stream J ∶ X
(J)

1
,X

(J)

2
,… .

Table 1   Directory of this 
paper’s error control theorems

Error metrics Untruncated, type I and 
II controlling

Truncated, rejective

FDR∕FNR Theorem 3.1 Theorem 4.1
pFDR∕pFNR Theorem 3.2 Theorem 4.2
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if �(j) ∈ H(j) , and false if �(j) ∈ G(j) . The global parameter � = (�(1),… , �(J)) is the 
concatenation of the individual parameters and is contained in the global parameter 
space Θ = Θ(1) ×⋯ × Θ(J).

The general notation (1) includes fully sequential sampling where the streamwise 
sample sizes may take any value 1, 2,… ad infinitum, but other sampling setups fit 
this as well including group sequential, truncated, and even fixed-sample size test-
ing. For example, the nth “observation” X(j)

n  in the jth stream may actually be the 
nth group X(j)

n = (X
(j)

n,1
,… ,X

(j)

n,�
) of size � . Moreover, the group size � may vary 

with n and may even be data-dependent, e.g., determined by some type of adap-
tive sampling. Similarly, truncated sequential (or group sequential) sampling can be 
implemented for the jth stream by defining X(j)

n = � for all n > N
(j)

 for some stream-
specific truncation point N

(j)
 , or globally for all streams by replacing statements like 

“for some n” in what follows with “for some n ≤ N ,” for some global truncation 
point N . One may represent a fixed-sample size in the jth stream in this way by tak-
ing N

(j)
= 1 , or in all streams with N = 1.

For any multiple testing procedure under consideration, let V denote the number 
of true null hypotheses it rejects (i.e., the number of false positives), W the number 
of false null hypotheses it accepts (i.e., the number of false negatives), and R the 
number of null hypotheses it rejects. The number of null hypotheses accepted is, 
therefore, J − R . Under the true value of the parameter � , the false discovery and 
nondiscovery rates [1, FDR,FNR] are

where x ∨ y = max{x, y} . Similarly, the positive-false discovery rate pFDR [19] and 
its type II analog, the positive-false nondiscovery rate pFNR, are defined as

2.2 � Test Statistics and Critical Values

The building blocks of the sequential procedures defined below are J individual 
sequential test statistics {Λ(j)(n)}j∈[J], n≥1 , where Λ(j)(n) is the statistic for testing H(j) 
vs. G(j) based on the data X(j)

1
,X

(j)

2
,… ,X

(j)
n  available from the jth stream at time n. For 

example, in parametric settings Λ(j)(n) may be a sequential log (generalized) like-
lihood ratio statistic for testing H(j) vs. G(j) . Like the fixed-sample size procedures 
mentioned above, our sequential procedures will utilize step values (or step value 
vectors) which are J-long vectors of nondecreasing values in [0, 1], such as

FDR = FDR(�) = E�

(
V

R ∨ 1

)
, FNR = FNR(�) = E�

(
W

(J − R) ∨ 1

)
,

(2)

pFDR = pFDR(�) = E�

(
V

R

||||
R ≥ 1

)
and pFNR = pFNR(�) = E�

(
W

J − R

||||
J − R ≥ 1

)
.

(3)� = (𝛼1,… , 𝛼J) with 0 < 𝛼1 ≤ 𝛼2 ≤ … ≤ 𝛼J ≤ 1.
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Given two step value vectors  � and � , we say that a sequential test statis-
tic  {Λ(j)(n)}n≥1 is implemented with step values �, � if there are critical val-
ues {A(j)

k
,B

(j)

k
}k∈[J] such that

for all k ∈ [J] . The critical values A(j)

1
,B

(j)

1
 are simply the critical values for the 

sequential test that samples until Λ(j)(n) ∉ (A
(j)

1
,B

(j)

1
) , and this test has type I and II 

error probabilities bounded above by �1 and �1 , respectively. The values B(j)

k
 , k ∈ [J] , 

are then such that the similar sequential test with critical values A(j)

1
 and B(j)

k
 has 

type  I error probability �k , which is just a restatement of (4), with an analogous 
statement holding for critical values A(j)

k
 and B(j)

1
 , type II error probability �k , and (5). 

We say that the test statistics {Λ(j)(n)}j∈[J], n≥1 for all the streams are implemented 
with step values �, � if they are for each stream. In all commonly encountered test-
ing situations there are standard sequential statistics which can be implemented with 
given step values �, � . [5, 20] and [4] give examples.

Without loss of generality we assume that, for each j ∈ [J],

The sequential multiple testing procedures proposed below will involve ranking the 
test statistics associated with different data streams, which may be on completely 
different scales in general, so for each stream j we introduce a standardizing function 
�(j)(⋅) which will be applied to the statistic Λ(j)(n) before ranking. The standardizing 
functions �(j) can be any increasing functions such that �(j)(A

(j)

k
) and �(j)(B

(j)

k
) do not 

depend on j, and we let

denote these common values. Given critical values {A(j)

k
,B

(j)

k
}j,k∈[J] satisfying (4)–(5), 

one may choose arbitrary values {ak, bk}k∈[J] satisfying the same monotonicity con-
ditions as the {A(j)

k
,B

(j)

k
} according to (7)–(8) and then define the standardizing func-

tions �(j)(⋅) to be increasing, piecewise linear functions satisfying (9). For example, 
if all the �k are distinct and the �k are distinct then a simple choice for the {aj, bj} are 
the integers

(4)
P𝜃(j) (Λ

(j)(n) ≥ B
(j)

k
some n, Λ(j)(n�) > A

(j)

1
all n� < n) ≤ 𝛼k for all 𝜃(j) ∈ H(j),

(5)
P𝜃(j) (Λ

(j)(n) ≤ A
(j)

k
some n, Λ(j)(n�) < B

(j)

1
all n� < n) ≤ 𝛽k for all 𝜃(j) ∈ G(j),

(6)A
(j)

1
≤ A

(j)

2
≤ … ≤ A

(j)

J
≤ B

(j)

J
≤ B

(j)

J−1
≤ … ≤ B

(j)

1
,

(7)A
(j)

k
= A

(j)

k+1
if and only if �k = �k+1,

(8)B
(j)

k
= B

(j)

k+1
if and only if �k = �k+1.

(9)ak = �(j)(A
(j)

k
) and bk = �(j)(B

(j)

k
), j, k ∈ [J],
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In any case, the assumptions on the critical values and standardizing functions imply 
that the ak must be nondecreasing and the bk nonincreasing. Finally, we denote 
Λ̃(j)(n) = �(j)(Λ(j)(n)) and then (4)–(5) can be written

for all j, k ∈ [J].
The theorems in this paper will give upper bounds on the FDR and pFDR, and their 

type II versions, for sequential procedures implemented with arbitrary step values �, � . 
In practice we recommend using some of the commonly used values such as those rec-
ommended by [1] or [21]. For desired value q1 ∈ (0, 1) of the type I error metric (FDR 
or pFDR), the former are

and the latter are

Here, x ∧ y = min{x, y} . We recommend using the same expressions for � = �(q2) 
for desired value q2 ∈ (0, 1) of the type II error metric (FNR or pFNR). In our exam-
ples below we will refer to (12) and (13) as the BH and BL step values, respectively.

2.3 � Simple Hypotheses and Wald Approximations

In practice, many testing situations can be reduced to, or approximated by, testing 
simple vs. simple hypotheses. [22, Sect. 1] point out that testing a battery of simple 
vs. simple hypothesis tests has been the standard setup for use of FDR in the litera-
ture. In this section we show how to construct the test statistics Λ(j)(n) and critical 
values A(j)

s ,B
(j)
s  satisfying (4)–(5) for any data stream j such that H(j) and G(j) are 

both simple hypotheses. In this case the test statistic Λ(j)(n) can be taken to be log-
likelihood ratio (density under G(j) divided by the density under H(j) ) yielding the 
sequential probability ratio test (SPRT; see [23]}. See [5, Sect. 5.1] for a more for-
mal description of hypotheses and parameter space in this setup. In the single null 
hypothesis testing setup, the SPRT samples until Λ(j)(n) ∉ (A,B) where the critical 
values A, B are chosen so that

a1 = −J, a2 = −J + 1, … , aJ = −1, bJ = 1, bJ−1 = 2, … , b1 = J.

(10)
P𝜃(j) (�Λ

(j)(n) ≥ bk some n, �Λ(j)(n�) > a1 all n
� < n) ≤ 𝛼k for all 𝜃(j) ∈ H(j),

(11)
P𝜃(j) (�Λ

(j)(n) ≤ ak some n, �Λ(j)(n�) < b1 all n
� < n) ≤ 𝛽k for all 𝜃(j) ∈ G(j),

(12)�j = �(q1)j ∶= q1j∕J for j ∈ [J],

(13)�j = �(q1)j = 1 −

(
1 −

(
1 ∧

q1J

J − j + 1

))1∕(J−j+1)

for j ∈ [J].

(14)PH(j) (Λ(j)(n) ≥ B some n, Λ(j)(n�) > A all n� < n) ≤ 𝛼,

(15)PG(j) (Λ(j)(n) ≤ A some n, Λ(j)(n�) < B all n� < n) ≤ 𝛽
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for desired type I and II error probabilities � and � . The most common way of choos-
ing the critical values A, B is to use the closed-form Wald approximations

for which it is assumed that � + � ≤ 1 and � ≥ 0 is a fixed adjustment term to account 
for the test statistic’s excess over the boundary upon stopping. See [24, Sect. 3.3.1] 
for a derivation of Wald’s [25] original � = 0 case and, based on Brownian motion 
approximations, [26, p. 50 and Chapter X] derives the value � = 0.583 which has 
been used to improve the approximation for continuous random variables. With our 
multiple testing examples below we recommend using Siegmund’s � = 0.583.

In order to apply the above to the jth stream in the multiple testing setup for 
given step value vectors � and � , a slight extension of [5, Theorem 5.1] shows that 
choosing

where

satisfies (4)–(5) up to Wald’s approximations, and that �̃k + �k ≤ 1 and �k + �̃k ≤ 1 
for all k ∈ [J] . Although, strictly speaking, the inequalities (4)–(5) will only be guar-
anteed to hold approximately using these approximations, [24] show that the actual 
type I and II error probabilities can only exceed the nominal values by a negligibly 
small amount in the worst case, and the difference approaches 0 for small nominal 
values, which is relevant in the present multiple testing situation where we will uti-
lize fractions of � and � . Alternatives to the Wald approximations in the simple vs. 
simple setup are Monte Carlo or to replace the terms in (16) by the values log � and 
log(1∕�) , respectively, for which (14)–(15) hold conservatively (see [24]) and pro-
ceed similarly.

3 � Procedures Controlling Type I and II Error Metrics

3.1 � The Generic Sequential Step‑Down Procedure

Next we review the generic sequential step-down procedure, defined in [4]. Versions 
of this procedure, implemented with certain step values �, � , will produce our pro-
posed type I and II FDR- and pFDR-controlling sequential procedures. We assume 
that test statistics are implemented with �, � , and the critical values referred to are 
those satisfying (4)–(5).

We describe the procedure in terms of stages of sampling, between which reject/
accept decisions are made. Let Ji ⊆ [J] ( i = 1, 2,… ) denote the index set of the 

(16)

A = AW (�, �) ∶= log

(
�

1 − �

)
+ �, B = BW (�, �) ∶= log

(
1 − �

�

)
− �

(17)A
(j)

k
= AW (�̃k, �k), B

(j)

k
= BW (�k, �̃k) for k ∈ [J],

(18)�̃k ∶=
�1(1 − �k)

1 − �1
and �̃k ∶=

�1(1 − �k)

1 − �1
for k ∈ [J],
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active data streams, those whose corresponding null hypothesis H(j) has been neither 
accepted nor rejected yet at the beginning of the ith stage of sampling, and ni denote 
the cumulative sample size of any active test statistic up to and including the ith 
stage. The total number of null hypotheses that have been rejected (resp. accepted) 
at the beginning of the ith stage is denoted by ri (resp. ci ). Accordingly, set J1 = [J] , 
n0 = 0 , r1 = c1 = 0 . Let | ⋅ | denote set cardinality. Then the ith stage of sampling 
( i = 1, 2,… ) of the Generic Sequential Step-Down Procedure implemented with 
step values �, � proceeds as follows. 

1.	 Sample the active streams {X(j)
n }j∈Ji, n>ni−1

 until n equals 

2.	 Order the active test statistics 

 where j(ni,�) denotes the index of the � th ordered active statistic at the end of 
stage i.

3.	 (a)	 If the upper boundary in (19) has been crossed, Λ̃(j)(ni) ≥ bri+1 for 
some j ∈ Ji , then reject the ti ≥ 1 null hypotheses 

 where 

 and set ri+1 = ri + ti . Otherwise set ri+1 = ri.
(b)	 If the lower boundary in (19) was crossed, Λ̃(j)(ni) ≤ aci+1 for some j ∈ Ji , 

then accept the t′
i
≥ 1 null hypotheses 

 where 

 and set ci+1 = ci + t�
i
 . Otherwise set ci+1 = ci.

4.	 Stop if there are no remaining active hypotheses, ri+1 + ci+1 = J . Otherwise, 
let Ji+1 be the indices of the remaining active hypotheses and continue on to 
stage i + 1.

Thus, the procedure samples all active data streams until at least one of the active 
null hypotheses can be accepted or rejected, indicated by the stopping rule (19). At 
that point, step-down rejection/acceptance rules are used in steps 3a/3b to reject/

(19)ni = inf
{
n > ni−1 ∶ �Λ(j)(n) ∉ (aci+1, bri+1) for some j ∈ Ji

}
.

Λ̃(j(ni,1))(ni) ≤ Λ̃(j(ni,2))(ni) ≤ … ≤ Λ̃(j(ni,|Ji|))(ni),

H(j(ni,|Ji|)),H(j(ni,|Ji|−1)),… ,H(j(ni,|Ji|−ti+1)),

ti = max
{

t ∈ [|i|]:Λ̃(j(ni ,�))(ni) ≥ bri+|i|−�+1 for all � = |i| − t + 1,… , |i|
}

,

H(j(ni,1)),H(j(ni,2)),… ,H(j(ni,t
�
i
)),

t�
i
= max

{
t ∈ [|Ji|] ∶ Λ̃(j(ni,�))(ni) ≤ aci+� for all � = 1,… , t

}
,
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accept some active null hypotheses. After updating the list of active hypotheses, the 
process is repeated until no active hypotheses remain.

3.2 � Untruncated Sequential Procedures Controlling FDR/FNR or pFDR/pFNR

For m ∈ {0, 1,… , J} and step values � , define

Our main results in this section, Theorems  3.1 and 3.2, show that the generic 
sequential step-down procedure applied with step values � have error metrics (e.g., 
FDR) bounded above by D(�,m0) where m0 is the number of true null hypotheses, 
which is in turn bounded above by D(�) . Since m0 is usually unknown in practice, 
this latter bound is typically more useful in practice, and the former is primarily of 
interest for theoretical understanding of the procedure, although there are situations 
wherein the number of true nulls is assumed to be known (e.g., [27, 28]). It follows 
from D(�,m) being linear in � that

Hence, an error metric of a procedure utilizing step values � being bounded above 
by D(�) is equivalent to saying that, for a desired value q ∈ (0, 1) of the error met-
ric, the procedure utilizing step values �̃ = q�∕D(�) has the error metric bounded 
above by q.

The proofs of Theorems 3.1 and 3.2 are delayed until the Appendix.

Theorem  3.1  The generic sequential step-down procedure implemented with step 
values �, � satisfies

regardless of the dependence between data streams, where D is as defined in (20)–
(21) and m0 and m1 are the numbers of true and false null hypotheses, respectively. 
In particular, given q1, q2 ∈ (0, 1) , the generic sequential step-down procedure 
implemented with step values �̃ = q1�∕D(�) , �̃ = q2�∕D(�) satisfies

regardless of the dependence between data streams.

For the next theorem, recall that R denotes the number of null hypotheses rejected 
by the procedure in question.

(20)D(�,m) = m

(
J−m+1∑

j=1

�j − �j−1

j
+ (J − m)

J∑

j=J−m+2

�j − �j−1

j(j − 1)

)
,

(21)D(�) = max
0≤m≤J

D(�,m).

(22)D(c�) = cD(�) for any c>0.

(23)
FDR(�) ≤ D(�,m0) ≤ D(�) and FNR(�) ≤ D(�,m1) ≤ D(�) for all � ∈ Θ

(24)FDR(�) ≤ q1 and FNR(�) ≤ q2 for all � ∈ Θ
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Theorem 3.2  Let D be as defined in (20)–(21) and m0 and m1 denote the numbers of 
true and false null hypotheses, respectively. Fix arbitrary � ∈ Θ . 

1.	 If 𝛾1, 𝛾2 > 0 are values such that the generic sequential step-down procedure 
implemented with step values �, � satisfies 

 then this procedure satisfies 

 regardless of the dependence between data streams.
2.	 In particular, given q1, q2 ∈ (0, 1) , the generic sequential step-down procedure 

implemented with step values �̃ = q1�1�∕D(�) , �̃ = q2�2�∕D(�) satisfies 

 regardless of the dependence between data streams, if 𝛾1, 𝛾2 > 0 satisfy (25) for 
this procedure.

3.	 For j ∈ [J] let 

 If maxj∈[J] 𝛾1j > 0 and maxj∈[J] 𝛾2j > 0 , then (25)–(26) hold with �i = maxj∈[J] �ij , 
i = 1, 2.

4 � Truncated, Rejective Procedures

In this section we describe versions of our procedures which only stop early to reject 
(rather than accept) null hypotheses and, thus, only explicitly control the correspond-
ing type I multiple testing error rate (FDR or pFDR), recorded in Theorems 4.1 and 
4.2. This setting naturally corresponds with having a streamwise maximum sample 
size (or “truncation point”) N which we assume throughout this section. For this 
reason we refer to them as “truncated, rejective” versions of the procedures. These 
procedures may be preferable in certain situations such as when (a) a null hypoth-
esis being true represents the system being “in control” and, therefore, continued 
sampling (rather than stopping) is desirable, (b) there is a maximum sample size 
imposed on the data streams possible preventing simultaneous achievement of the 
nominal error bounds (4)–(5), or (c) the type  II multiple testing error rate (e.g, 
FNR) q2 is not well motivated. In any of theses cases, one may prefer to drop the 
requirement that the type  II multiple testing error rate be strictly controlled at an 
arbitrary level q2 and use one of the rejective procedures which, roughly speaking, 

(25)P𝜃(R > 0) ≥ 𝛾1 and P𝜃(R < J) ≥ 𝛾2,

(26)pFDR(�) ≤
D(�,m0)
P�(R > 0)

≤ D(�)
�1

and pFNR(�) ≤
D(�,m1)
P�(R < J)

≤
D(�)
�2

(27)pFDR(�) ≤ q1 and pFNR(�) ≤ q2

(28)
𝛾1j = P𝜃(j) (�Λ

(j)(n) ≥ b1 some n, �Λ(j)(n�) > aJ all n
� < n),

𝛾2j = P𝜃(j) (�Λ
(j)(n) ≤ a1 some n, �Λ(j)(n�) < bJ all n

� < n).
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are similar but ignore the lower stopping boundaries A(j)

k
 . On the other hand, if q2 is 

not well motivated but the statistician prefers early stopping under the null hypoth-
eses, we encourage the use of one of our procedures in Sect. 3 with both early stop-
ping to reject and accept null hypotheses, and treat q2 as a parameter to be chosen 
to give a procedure with other desirable operating characteristics, such as expected 
total or streamwise maximum sample size.

4.1 � Setup and Critical Values

The setup for rejective procedures requires a few modifications. Let the data streams 
X
(j)
n  , test statistics Λ(j)(n) , and parameters �(j) and � be as in Sect. 2. Since only the 

type I multiple testing error rate, FDR or pFDR, will be explicitly controlled we only 
require specification of null hypotheses H(j) ⊆ Θ(j) and not of alternative hypotheses 
G(j) . We assume a streamwise maximum sample size N for each stream, but with 
only notational changes, what follows could be formulated by stream-specific trun-
cation points {N

(j)
}j∈[J] or with sample sizes other than 1,… ,N.

Given step values � , we adapt our definition from Sect.  2.2 of the test statis-
tics {Λ(j)(n)}j,n being implemented with step values � to this truncated, rejective set-
ting if, for all j, k ∈ [J] , the critical values B(j)

1
,… ,B

(j)

J
 satisfy

as well as (6) and (8) without loss of generality. We let the standardizing func-
tions �(j) be any increasing functions such that bk = �(j)(B

(j)

k
) does not depend on j, 

and Λ̃(j)(n) = �(j)(Λ(j)(n)) denote the standardized statistics.
In the next section we give the truncated, rejective version of the generic step-

down procedure, and then in Theorems 4.1 and 4.2 state their FDR- and pFDR-con-
trolling properties. The proofs are similar to the proofs of Theorems 3.1 and 3.2 and 
are sketched in the Appendix.

4.2 � The Generic Rejective Sequential Step‑Down Procedure

With the notation of Sect. 3.1, the ith stage ( i = 1, 2,… ) of the Generic Rejective 
Sequential Step-Down Procedure with step values � proceeds as follows. 

1.	 Sample the active streams {X(j)
n }j∈Ji, n>ni−1

 until n equals 

2.	 If ni = N and no test statistic has crossed the critical value in (29), accept all active 
null hypotheses and terminate the procedure. Otherwise, proceed to Step 3.

3.	 Order the active test statistics 

P�(j)

(
Λ(j)(n) ≥ B

(j)

k
for some n ≤ N

)
≤ �k for all �(j) ∈ H(j),

(29)ni = N ∧ inf
{
n > ni−1 ∶ �Λ(j)(n) ≥ bri+1 for some j ∈ Ji

}
.
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 and reject the ti ≥ 1 null hypotheses 

 where 

4.	 If ri + ti = J or ni = N , terminate the procedure. Otherwise, set ri+1 = ri + ti , let 
Ji+1 be the indices of the remaining hypotheses, and continue on to stage i + 1.

4.3 � Truncated, Rejective Procedures Controlling FDR or pFDR

Theorem  4.1  The generic rejective sequential step-down procedure implemented 
with step values � satisfies

regardless of the dependence between data streams, where D is as defined in (20)–
(21) and m0 is the number of true null hypotheses. In particular, given q1 ∈ (0, 1) , 
the generic rejective sequential step-down procedure implemented with step values 
�̃ = q1�∕D(�) satisfies

regardless of the dependence between data streams.

Theorem 4.2  Let D be as defined in (20)–(21) and m0 denote the numbers of true 
null hypotheses. Fix arbitrary � ∈ Θ . 

1.	 If 𝛾1 > 0 is such that the generic rejective sequential step-down procedure imple-
mented with step values � satisfies 

 then this procedure satisfies 

 regardless of the dependence between data streams.
2.	 In particular, given q1 ∈ (0, 1) , the generic rejective sequential step-down pro-

cedure implemented with step values �̃ = q1�1�∕D(�) satisfies 

Λ̃(j(ni,1))(ni) ≤ Λ̃(j(ni,2))(ni) ≤ … ≤ Λ̃(j(ni,|Ji|))(ni)

H(j(ni,|Ji|)),H(j(ni,|Ji|−1)),… ,H(j(ni,|Ji|−ti+1)),

ti = max
{

t ∈ [|i|]:Λ̃(j(ni ,�))(ni) ≥ bri+|i|−�+1 for all � = |i| − t + 1,… , |i|
}

.

(30)FDR(�) ≤ D(�,m0) ≤ D(�) for all � ∈ Θ

(31)FDR(�) ≤ q1 for all � ∈ Θ

(32)P𝜃(R > 0) ≥ 𝛾1,

(33)pFDR(𝜃) ≤
D(�,m0)

P𝜃(R > 0)
≤

D(�)

𝛾1

(34)pFDR(�) ≤ q1
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 regardless of the dependence between data streams, if 𝛾1 > 0 satisfies (25) for 
this procedure.

3.	 For j ∈ [J] let 

 If maxj∈[J] 𝛾1j > 0 , then (32)–(33) hold with �1 = maxj∈[J] �1j.

5 � Simulation Studies

In this section we present the results of simulation studies of the sequential step-
down procedures described above in Sects. 3 and 4 in order to evaluate their oper-
ating characteristics and compare them to analogous fixed-sample procedures. All 
computations in this section and the analysis of the UK Yellow Card pharmacovigi-
lance database in Sect. 6 were performed using our Python package available from 
github.​com/​bartr​off792/​mult-​seq-​depen​dence. First we describe the distributional 
setups for our simulation studies, and in then discuss the results in Tables  2 and 
3 and conclude by comparing our proposed sequential procedures with appropriate 
fixed-sample competitors.

In order to examine the performance of the proposed sequential procedures on 
correlated Poisson and Binomial data we (i) generated correlated normally distrib-
uted data from a Gaussian copula [29], (ii) applied in the inverse Gaussian c.d.f. to 
this data to obtain quantiles, and (iii) applied Poisson and Binomial (respectively) 
c.d.f.s to the quantiles to obtain correlated data of those marginal distributions. 
That is, for each time point  i we first generated a J-dimensional multivariate nor-
mal vector Yi ∼ NJ(0,Σ) , using the Toeplitz covariance matrix Σjj� = �|j−j

�| for all 
j, j� ∈ [J] and where � is a chosen value. Then the J-dimensional vector of quan-
tiles Qi = Φ−1(Yi) was computed where Φ is the standard normal c.d.f. Finally the 
data values X(j)

i
 , j ∈ [J] , were set to be

(35)�1j = P�(j) (Λ̃
(j)(n) ≥ b1 some n ≤ N).

Table 2   Expected sample 
size ENSeq and achieved FDR 
and FNR of sequential step-
down procedures controlling 
FDR and FNR, evaluated on 
negatively correlated Binomial 
data generated for different 
numbers m0 of true null 
hypotheses; standard errors 
(SE) are given following each 
estimated quantity

N
FSS

 is the sample size of the corresponding fixed-sample test 
using the same nominal FDR rate q

1
= 0.25 and which matches the 

achieved FNR rate of the sequential procedure

m0 NFSS ENSeq SE FDR SE FNR SE

0 101 36.0 0.34 0.000 0.000 0.111 0.010
1 105 39.8 0.34 0.009 0.001 0.079 0.006
3 101 45.9 0.33 0.027 0.002 0.049 0.004
5 97 50.5 0.32 0.047 0.003 0.031 0.002
7 103 53.9 0.33 0.069 0.004 0.020 0.002
9 113 55.1 0.32 0.109 0.007 0.007 0.001
10 – 55.2 0.32 0.168 0.012 0.000 0.000

http://github.com/bartroff792/mult-seq-dependence
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Here F� is the c.d.f. of the Poisson distribution with mean � , and the �j and pj are 
the specified means of the data in the jth stream in the Poisson and Binomial cases, 
respectively. This process was repeated independently at each needed time point  i. 
The specified value � above equals correlation of “adjacent” elements of Yi , cor-
responding to adjacent data streams, and we note that choosing 𝜌 < 0 , as we do in 
some of our simulations below, leads to negative dependence among data streams 
and hence is outside the PRDS condition under which step-up and down procedures 
are already well known (e.g., [30]) to control FDR.

For the Binomial data on which the procedures in Table 2 were evaluated, indi-
vidual Bernoulli observations  X(j)

i
 were generated as described above with mean 

pH = 0.05 under the null and pG = 0.15 under the alternative. For Table 3, the obser-
vations X(j)

i
 were generated as Poisson with mean �H = 1.5 under the null, �G = 2.0 

under the alternative. For both the Binomial and Poisson data generated to evaluate 
the procedures in Tables  2 and 3, respectively, J = 10 data streams were utilized 
scenarios with m0 = 0, 1, 3, 5, 7, 9, 10 true nulls and � = −.6 was used in the generat-
ing copula. Tables 2 and 3 contain the operating characteristics of the untruncated, 
FDR and FNR controlling procedures described in Theorem  3.1. In both tables, 
the sequential procedures were implemented with the nominal FDR and FNR error 
bounds q1 = 0.25 and q2 = 0.15 and using the Wald approximations (17)–(18) with 
the null/alternative pairs �H , �G and pH , pG for the Poisson and Binomial scenarios, 
respectively, with the BH step values (12). The truncated sequential procedures were 
implemented using Monte Carlo under the known, null parameter values �H , pH to 
find the critical values, as described in Sect. 4.1.

The achieved FDR and FNR of the sequential procedures in Tables 2 and 3 are 
substantially smaller than their nominal values q1 = 0.25 and q2 = 0.15 , although 
FNR is less so. To provide a meaningful comparison of these sequential procedures’ 
expected sample size ENSeq with a comparable fixed-sample size alternative proce-
dure, the sample size NFSS needed for a fixed-sample BH procedure with the same 

X
(j)

i
=

{
max

{
n ∶ F�j

(n) ≤ Qij

}
, for the Poisson case,

1{Qij ≤ pj}, for the Binomial case.

Table 3   Expected sample 
size ENSeq and achieved FDR 
and FNR of sequential step-
down procedures controlling 
FDR and FNR, evaluated on 
negatively correlated Poisson 
data generated for different 
numbers m0 of true null 
hypotheses; standard errors 
(SE) are given following each 
estimated quantity

N
FSS

 is the sample size of the corresponding fixed-sample test 
using the same nominal FDR rate q

1
= 0.25 and which matches the 

achieved FNR rate of the sequential procedure

m0 NFSS ENSeq SE FDR SE FNR SE

0 83 31.6 0.22 0.000 0.000 0.107 0.010
1 79 34.3 0.23 0.009 0.001 0.077 0.006
3 77 38.1 0.24 0.029 0.002 0.052 0.004
5 73 40.4 0.25 0.050 0.003 0.038 0.003
7 79 41.6 0.26 0.077 0.004 0.023 0.002
9 99 41.0 0.26 0.119 0.008 0.007 0.001
10 – 40.1 0.23 0.172 0.012 0.000 0.000
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nominal FDR control level q1 = 0.25 to match corresponding achieved FNR values 
are given in the second columns of the tables. Thus, the sequential procedures pro-
vide a large savings in term of sample sizes, at least roughly 45% savings in all cases 
and more than 60% savings in the small m0 cases in both tables, where the adaptivity 
of the sequential procedures is pronounced. And although the sequential procedures 
are conservative in the sense of having achieved FDR and FNR values smaller than 
their nominal values, the corresponding fixed-sample procedures are even more con-
servative in terms of achieved FDR value due to the larger sample size, while their 
FNR values were matched for comparison.

6 � Application: The UK’s Yellow Card Scheme Pharmacovigilance 
Database

6.1 � Introduction

The United Kingdom’s Yellow Card pharmacovigilance Database (yello​wcard.​mhra.​
gov.​uk/​infor​mation), run by the Medicines and Healthcare Products Regulatory 
Agency (MHRA), collects voluntary reports on safety and side effects from the pub-
lic and healthcare professionals in the UK on a host of healthcare treatments includ-
ing medicines, vaccines, medical devices, and even e-cigarettes; in what follows, for 
simplicity we refer to the treatments in Yellow Card generically as “drugs.” The Yel-
low Card data collection scheme, which now includes a mobile phone app, began in 
1964, spurred by the thalidomide crisis. Its use has grown steadily since then, now 
receiving more than 20,000 reports of possible side effects each year, and totaling 
more than half a million reports in the scheme’s first 40 years.

We created a Python script to download and analyze “Interactive Drug Analysis 
Profiles” PDF reports from Yellow Card on all of the roughly 2800 different drugs 
in the database through February 2016. Figure 1 is a heatmap showing the number 
of drugs (indicated by color) in these reports as a function of their total number 
of reported adverse action reactions over this period (y axis, on the log10 scale) 
and number of years (x axis) the drug has been in the database, calculated from 
the starting date for collection of reports on the drug until the closure date of the 
drug’s most recent summary report. The figure shows that some of the drugs have 
many thousands of reaction reports, collected over decades. However, the majority 
of drug entries have fewer reports, collected over less than one decade, emphasizing 
the need for nimble, sequential monitoring of this data.

6.2 � Illustrating the Sequential Procedures’ Performance on the Database

Some Yellow Card data has been considered in the statistics literature on mul-
tiple testing (e.g., [31]), but the inherently streaming nature of the data has not 
been taken into account, with only fixed-sample multiple testing methods being 
applied to it so far, to our knowledge. In order to demonstrate the behavior of the 

http://yellowcard.mhra.gov.uk/information
http://yellowcard.mhra.gov.uk/information
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sequential procedures proposed above on data like that in Yellow Card, we focus 
on a particular type of side effect report, amnesia, in the Yellow Card reports.

The MHRA informed us at the time of our data download that the exact 
time series of the reports to Yellow Card were not being made available, so it 
is not possible to apply our sequential procedures to the data precisely as it was 
being received by Yellow Card. But, for each of the drug reports downloaded as 
described above and illustrated in Fig. 1, we were able to obtain the average num-
ber of amnesia and other side effect reports per year, the starting date for collec-
tion of reports for each drug, and the date of the closure of the drug’s most recent 
summary report. So here we apply our sequential procedures to data streams 
simulated using the actual yearly average rates obtained from Yellow Card. This 

Fig. 1   Number of drugs (indicated by heatmap color) in the Yellow Card database in February 2016 as a 
function of total adverse reaction reports (y axis, on the log10 scale) and the number of years (x axis) the 
drug has been in the database
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approach, similar to the parametric Bootstrap [32], makes our simulation as close 
as possible to real Yellow Card data, given the limitations in data availability.

The Yellow Card data was used to simulate future drug reports as follows. At 
each time step a Poisson number of amnesia and non-amnesia reports for each drug 
was generated as correlated Poisson processes with rates

Note that we have added 1 amnesia and non-amnesia report to each drug in (36)–(37) 
to account for issues with rare or exotic drugs like inherently higher variance in 
use and reporting. These rates are visualized in Fig. 2, where the blue, green, and 
red points are the drugs with “low,” “medium,” and “high” amnesia report rates 
according to (38) and (39).

In order to generate a medically realistic correlation structure for the drugs, 
we utilized BioGPT [33], a generative language model trained on biomedi-
cal research articles. For each drug under consideration, we calculated the ele-
ment-wise mean of the BioGPT’s token embedding (its numerical representation 

(36)�(j)
amn

= (|{amnesia reports from drug j}| + 1)∕Tj,

(37)
�(j)
−amn

= (|{non-amnesia reports from drug j}| + 1)∕Tj, where

Tj = (drug j most recent report) − (drug j start date).

Fig. 2   Drug side effect rates (36)–(37) from the Yellow Card database data. Blue points are those drugs j 
with p(j) ≤ pH , green those with pH < p(j) < pG , and red those with p(j) ≥ pG , as defined by (38) and (39) 
(color figure online)
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of phrases, words, or characters) for “[DrugName] as a drug” and then applied 
K-means clustering to obtain K = 15 clusters of the drugs. Within each cluster, 
the copula method described in Sect. 5 was then used to generate the Poisson data 
using the Toeplitz covariance matrix given there, but with the correlation param-
eter � generated as a Beta(4, 2) random variable, shifted and scaled to have sup-
port [−1, 1] . In this way, drugs that were medically related according to BioGPT 
were more likely to receive non-trivial correlation.

In order to account accurately for the differing number of reports that drugs 
with different prescription and use rates in the database have, we set up the 
hypothesis tests not in terms of the Poisson rate parameters (36)–(37) but rather a 
scaled parameter:

The data generation scheme above is equivalent to a Binomial number of amnesia 
reports being generated at each time step, with success probability (38) and number 
of trials equal to the Poisson random total number of reports.

To set up our hypothesis tests, we utilize the Yellow Card database to calculate

which we use as surrogates for “typical” and “extreme” Binomial rates of amnesia 
reports, respectively. After calculating pH and pG on the entire Yellow Card data-
base, we then applied our sequential procedure to the J = 1800 drugs with the high-
est total side effect reports in the database. This reduction still maintains a large 
number of data streams but also allows us to filter out drugs that have only recently 
been made available with too small a number of reports, but also the opposite 
extreme of filtering out obscure and antiquated drugs that exist in the database (e.g., 
“Mammalian Blood” and “Wool Fat”).

For each of these J = 1800 drugs we tested the hypotheses

representing that the drug has a “typical” versus abnormally high rate of amnesia 
reports. For these we implemented the open-ended sequential test described in 
Theorem  3.1 for Binomial data using FDR controlled at q1 = 0.05 and FNR at 
q2 = 0.15 , with the Wald approximations  (17)–(18) the BH step values  (12). 
Running this data generation scheme with 1800 data streams a single time is 
computationally intensive even on a Google Cloud Computing instance, so rather 
than report Monte Carlo statistics, in Table 4 we give the output of a typical run 
and there list the first 15 drugs whose streams terminated to accept, and the first 
15 to reject, the null hypothesis  H(j) . Since the simulation is setup where each 
“observation” is the number of reports in a year, in the table the Termination Step 
corresponds to the number of years required for termination of each stream. The 
Termination Level is a measure of the strength of the terminal action, where smaller 

(38)p(j) =
�
(j)
amn

�
(j)
amn + �

(j)
−amn

≈
#amnesia reports for drug j

total # reports for drug j
.

(39)pH = 50th percentile of {p(j)}, and pG = 90th percentile of {p(j)},

H(j) ∶ p(j) ≤ pH vs. G(j) ∶ p(j) ≥ pG > pH
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Table 4   The earliest 15 
Yellow Card database drugs to 
terminate to reject, or accept, 
the null hypothesis H(j) in a 
single run of the sequential 
step-down procedure controlling 
FDR at q1 = 0.05 and FNR at 
q2 = 0.15

The Termination Step corresponds to the number of years, and ter-
mination level is the cumulative value of the level � in step  3a or 
3b of the procedure as defined in Sect. 3.1. cAC10-vcMMAE is an 
abbreviation for Chimeric Human Murine Monoclonal Antibody 
Cac10 Anti Cd30 Linked To Cytotoxic Molecule Sgd 1006

Drug Terminal action Termina-
tion step

Termina-
tion level

Bupropion Accept H(j) 1 2
Clozapine Accept H(j) 1 2
Etanercept Accept H(j) 2 8
Venlafaxine Accept H(j) 2 8
Varenicline Accept H(j) 2 8
Paroxetine Accept H(j) 2 8
Clostridium Tetani Accept H(j) 2 8
Telaprevir Accept H(j) 2 8
Adalimumab Accept H(j) 3 10
Rofecoxib Accept H(j) 3 10
Ranibizumab Accept H(j) 4 21
Amoxycillin Accept H(j) 4 21
Oseltamivir Accept H(j) 4 21
Trimethoprim Accept H(j) 4 21
Ciprofloxacin Accept H(j) 4 21
Zopiclone Reject H(j) 7 1
Simvastatin Reject H(j) 9 2
Zolpidem Reject H(j) 13 3
Bifonazole Reject H(j) 15 5
Rimonabant Reject H(j) 15 5
Enzalutamide Reject H(j) 25 7
Gabapentin Reject H(j) 25 7
Atorvastatin Reject H(j) 31 8
cAC10-vcMMAE Reject H(j) 32 9
Dutasteride Reject H(j) 33 10
Mitotane Reject H(j) 36 11
Boceprevir Reject H(j) 39 12
Lurasidone Reject H(j) 42 14
Asenapine Reject H(j) 42 14
Retigabine Reject H(j) 44 16
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values indicate a stronger acceptance/rejection of the null, and equals the cumulative 
value of the level � in step 3a or 3b of the procedure as defined in Sect. 3.1.

6.3 � Discussion

While we draw no medical conclusions from our simulations, we note that some of the 
drugs identified by our sequential procedure by stopping to reject their null hypoth-
eses in favor of an abnormally high level of amnesia reports, have been associated with 
amnesia in the biomedical literature (e.g., [34]). Monitoring pharmacovigilance data-
bases for amnesia and other cognitive impairment adverse events is a real-world prior-
ity of statisticians and regulators around the world; see [35] and [36] for examples of 
such analyses in the U.S.’s Food and Drug Administration Adverse Event Reporting 
System (FAERS; see www.​fda.​gov/​media/​97567/​downl​oad), and [37] for an analysis 
of the Korean Adverse Event Reporting System Database. The example presented here 
provides a possible new statistical tool for this important task that takes into account 
the real-time, streaming nature of the data as well as the inherent multiple comparisons 
issues with such data. Although we are aware of proposed approaches that separately 
take into account the time-sequential nature of the data (e.g., [38]) and the multiple 
comparison aspect, this is the first proposal to incorporate both that we are aware of.

The dominant statistical methods in this existing literature are “disproportionality 
analyses” (see [39, 40, 41, 42]), utilizing odds (or log odds) ratios of the probability of 
reporting an adverse event, which is equivalent to our use of the probabilities of such 
reports in (38)–(39). There we use the probabilities of such reports across the entire 
database as the levels of “typical” and “extreme” in (39) to set our hypotheses. This 
approach, known as “signal of disproportional reporting,” is common in the literature 
(e.g., [42–44]), although different approaches exist on how to choose these cutoffs and 
some of these authors use individual-level covariates, such as age in [38], in setting 
these cutoffs, which was not available in our example. However, signal of dispropor-
tional reporting is not a requirement of our method proposed here and those levels 
could be set by other methods such as from the medical literature, regulatory concerns, 
etc.

The approach proposed here could be used with other types of drugs and side 
effects, although domain-specific details the particular application will likely affect the 
choices made in implementation. For example, in monitoring adverse side effects of 
statins in the Korean pharmacovigilance database, [45] grouped together statin-specific 
symptoms and measured severity on the WHO-specified scale, and the life-threatening 
nature of adverse immune-mediated reactions associated with certain immunotherapies 
(e.g., [46]) would be taken into account in setting the early stopping properties of the 
procedure.

http://www.fda.gov/media/97567/download
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7 � Conclusion

We have proposed both open-ended and truncated sequential multiple testing pro-
cedures which can control FDR or pFDR (and their type II analogs, FNR or pFNR 
in the open-ended case) under arbitrary dependence between the data streams. 
These procedures have shown large savings in average sample size compared to 
their fixed-sample counterparts in our simulation studies, and in Sect. 6, we dem-
onstrate how these procedures may be used to monitor data streams like those 
coming from a pharmacovigilance database, like the UK’s Yellow Card database.

Appendix

Proof of Theorem 3.1

We first prove the inequalities for FDR in (23) for the sequential step-down pro-
cedure with step values �, � , and then discuss those for FNR. The inequalities in 
(24) then follow, using (22). Our proof largely follows the arguments of [3], with 
a few important differences to account for the sequential nature of our procedures.

Fix arbitrary � and omit it from the notation, and below let P(⋅) and E(⋅) denote 
the probability and expectation under � and an arbitrary joint distribution between 
the data streams. Without loss of generality assume H(1),… ,H(m0) are the true 
hypotheses for some m0 ∈ [J] , the m0 = 0 case being trivial since FDR = 0 in this 
case. For i ∈ [J] let �i denote the time at which the ith stream Λ̃(i) terminates, and 
for i, j ∈ [J] let

setting b0 = ∞ to handle the j = 1 case. The event Fij is similar (in fact, contained 
in) the event in (10), but it specifies which interval [bj, bj−1) the ith statistic Λ̃(i) is in 
when stopping to reject its corresponding null H(i) ; we will refer to this as H(i)  being 
rejected at the jth level. Recalling that R and V denote the number of null and true 
null hypotheses, respectively, rejected by the procedure, define

with which we can write

which is analogous to similar expressions obtained for FDR in the fixed-sample set-
ting obtained by [2] and [47]. To see why (42) holds here for the sequential proce-
dure, write

(40)Fij = {Λ̃(i)(�i) ∈ [bj, bj−1)},

(41)pijk = P(Fij ∩ {R = k}) for i, j, k ∈ [J],

(42)FDR =

m0∑

i=1

J∑

j=1

J∑

k=j

pijk

k
,
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where in the last equality, we have reordered the sums and used the definition of pijk.
We further extend the notation to expand (42). Given k ∈ [J] , � ∈ [k ∧ m0] , and 

a pair of vectors (i, j) in

define

which is the probability of k rejections, of which the false rejections are H(id) being 
rejected at the jd th level, d ∈ [�] . Let

be the set of those vector pairs that include H(i) being rejected at the jth level. With 
these definitions we can further expand pijk in the form:

This equality holds because, for distinct pairs (i, j) ∈ Ω�k(i, j) , the events in (43) cor-
respond to different nulls being rejected, or at different levels, and are hence disjoint, 
thus,

For distinct values of � , the events in this last are clearly disjoint, hence summing 
over � yields

With (44) established, we can substitute it into (42) to obtain

FDR = E
(

V

R ∨ 1

)
=

J∑

k=1

1

k
E(V1{R = k}) =

J∑

k=1

m0∑

i=1

1

k
P({H(i) rejected} ∩ {R = k})

=

J∑

k=1

m0∑

i=1

k∑

j=1

1

k
P(Fij ∩ {R = k}) =

m0∑

i=1

J∑

j=1

J∑

k=j

1

k
pijk,

Ω�k = {(i, j) ∈ [m0]
� × [k]� ∶ 1 ≤ ii < i2 < … < i� ≤ m0},

(43)pijk = P

(
�⋂

d=1

Fidjd
∩ {R = k} ∩ {V = �}

)
,

Ω�k(i, j) = {(i, j) ∈ Ω�k ∶ (i, j) = (id, jd) for some d ∈ [�]}

(44)pijk =

k∧m0∑

�=1

∑

(i,j)∈Ω�k(i,j)

pijk.

∑

(i,j)∈Ω�k(i,j)

pijk = P
(
Fij ∩ {R = k} ∩ {V = �}

)
.

k∧m0∑

�=1

∑

(i,j)∈Ω�k(i,j)

pijk =

k∧m0∑

�=1

P
(
Fij ∩ {R = k} ∩ {V = �}

)
= P(Fij ∩ {R = k}) = pijk.
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The second equality in (45) is obtained by reordering the summations, and the last 
equality uses

since each pair (i, j) ∈ Ω�k appears in the � sets Ω�k(i1, j1),… ,Ω�k(i� , j�) , and only 
those sets.

With the expression (45) for FDR established, we now consider constraints that 
the pijk must satisfy. For the first constraint, take arbitrary k ∈ [J] , � ∈ [k ∧ m0] , 
(i, j) ∈ Ω�k , and let j(1) ≤ … ≤ j(�) denote an ordering of the values in j = (j1,… , j�) . 
For an arbitrary fixed-sample step-down procedure with pijk defined analogously, [3, 
Lemma 3.3] show that

Their proof depends only on the step-down structure and the values that R, V can 
take with positive probability, and thus, hold for our sequential step-down procedure 
as well, so we do not repeat the proof here.

The other constraint relates the pijk to the error probabilities in (10). First observe 
that, for any i ∈ [m0] , the events Fi1,Fi2,… are disjoint, as are {R = 1}, {R = 2},… . 
Then, for any s ∈ [J] , we write (10) as follows

using (44) for this last equality.
Combining (45), (46), and (47), the goal of finding the worst-case joint distribu-

tion that maximizes FDR can be stated as finding the {pijk} that

At this point the {pijk} can be completely divorced from their original meaning about 
a multiple testing procedure and treated as arbitrary variables in the constrained 
optimization problem  (48). Guo and Rao [3] solve a similar problem, identical to 

(45)

FDR =

m0∑

i=1

J∑

j=1

J∑

k=j

k∧m0∑

�=1

∑

(i,j)∈Ω�k(i,j)

pijk

k
=

m0∑

�=1

J∑

k=�

m0∑

i=1

k∑

j=1

∑

(i,j)∈Ω�k(i,j)

pijk

k

=

m0∑

�=1

J∑

k=�

∑

(i,j)∈Ω�k

�pijk

k
.

m0∑

i=1

k∑

j=1

∑

(i,j)∈Ω�k(i,j)

pijk

k
=

∑

(i,j)∈Ω�k

�pijk

k
,

(46)pijk = 0 if k − � > m − m0 or j(d) > k − � + d for some d ∈ [�].

(47)

�s ≥ P

(
s⋃

j=1

Fij

)
=

s∑

j=1

P(Fij) =

s∑

j=1

P

(
Fij ∩

J⋃

k=1

{R = k}

)
=

s∑

j=1

J∑

k=1

P
(
Fij ∩ {R = k}

)

=

s∑

j=1

J∑

k=1

pijk =

s∑

j=1

J∑

k=1

k∧m0∑

�=1

∑

(i,j)∈Ω�k(i,j)

pijk,

(48)maximize FDR =

m0∑

�=1

J∑

k=�

∑

(i,j)∈Ω�k

�pijk

k
subject to (46) and (47).
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(48) except for the second constraint; their second constraint is sufficient but not 
necessary for our second constraint (47); about this, see Remark A.1. Guo and Rao 
proceed to solve this problem by producing an upper bound on FDR that coincides 
with FDR at its maximum D(�,m0) , and then show that the maximizer satisfies both 
constraints. Since their second constraint is sufficient for ours, their proof applies 
here, and we do not repeat more of the details here. This establishes the inequalities 
for FDR in (23).

The inequalities for FNR in (23) are established in a completely similar way after 
reversing the roles of the “type I” and “type II” objects, e.g., substituting FNR for 
FDR, � for � , the bound (11) for (10), etc. The details are straightforward and, there-
fore, omitted here. 	�  ◻

Remark A.1  Guo and Rao’s [3, expression (19)] second constraint involves 
bounding from above the probability that a p value for a true null falls in the 
interval [�j−1, �j) by �j − �j−1 . Validity of the p value is not sufficient for this to 
hold and, for example, it may fail for valid but discrete p values. Therefore, their 
proof actually requires a condition stronger than validity on the p values, for 
example having the exact uniform (0, 1) null distribution. We avoid the need for 
such a stronger condition by summing over j in (47), and thus, only need (10) 
which is the sequential analog of validity for p values in the fixed-sample setup.

Sketch of Proof of Theorem 3.2

The proof of the inequalities for pFDR in (26) is similar to the proof of Theorem 3.1 
after replacing pijk in (41) by

and using (25) to bound P(R > 0) from below, leading to the factor of 1∕�1 in the 
bound. The proof of the inequalities for pFNR in (26) proceeds similarly, condition-
ing on R < J and using �2 . Part 2 of Theorem 3.2 then follows using (22). In Part 3, 
the event in (28) implies rejection of H(j) , hence maxj 𝛾1j ≤ P(R > 0) , with analo-
gous statements applying to the type II version.

Sketch of Proofs of Theorems 4.1 and 4.2

The proof of Theorem 4.1 follows the proof of FDR control in Theorem 3.1 with pijk 
defined in (41) but with

rather than (40).
For Theorem 4.2, the proof proceeds the similarly but with pijk replaced by

pijk = P(Fij ∩ {R = k}|R > 0)

(49)Fij = {�Λ(i)(𝜏i) ∈ [bj, bj−1), 𝜏i < N}
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again with Fij given by (49). Then (32) is used to bound P(R > 0) from below, giv-
ing the factor of 1∕�1 in the bound. Part 2 follows from (22), and the event in (35) of 
Part 3 implies rejection of H(j) , hence maxj 𝛾1j ≤ P(R > 0).
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